
Globus XIO Compression Driver: Enabling On-the-fly
Compression in GridFTP

Mattias Lidman1, John Bresnahan2, Rajkumar Kettimuthu1,3
1Computation Institute, University of Chicago, Chicago, IL

2Redhat Inc.
3Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL

*kettimut@mcs.anl.gov

Abstract—Multicore systems open the door to compression in
Grid environments with high-speed networks to enable "faster
than network speed" transfers. GridFTP is a data transport
protocol that can break up its transfer payload in such a way that
streaming it through multiple cores is possible. With the
additional parallel processing power added by multicore systems
it is possible to pipeline compression and packet switching in such
a way that seemingly faster than network speed transfers are
possible. In this paper, we present the Globus XIO compression
driver, which enables GridFTP to compress data on-the-fly. We
also present a detailed performance study of the compression
driver using XIOPerf, an Iperf-like tool and GridFTP.

Index Terms— GridFTP, Compression, High-speed transfers

I. INTRODUCTION
The need to move data faster is ever increasing. The use of

compression to improve data transfer rates is not a new idea
[1]. But this has not been adopted as a standard feature for
data movement in Grid [2] environments. Also, for sites
connected with by high-speed networks such as ESnet [3] and
Internet2 [4], the network was not the bottleneck most of the
time. But as host systems with many cores emerge,
compression might provide benefits even on these high-speed
networks. We have developed a compression driver for the
Globus XIO framework [5] that compresses data as it is sent,
and decompress, as it is received. The driver can under
virtually any circumstances reduce network load by reducing
the amount of data actually transferred. Under the right
circumstances it can also help individual endpoints achieve
higher-than-network speeds. This study will attempt to
investigate under which circumstances this occurs, and when
the driver is downright harmful. The answer to this question
depends primarily on four factors:

• System resources - assuming infinite system resources
and finite network bandwidth the driver will virtually always
be beneficial or have no effect. In the case where the
transferred data is completely random, the amount of data
transferred will increase by a few hundreds of a percent. We
will not consider this a factor because of the miniscule amount
of possible overhead, and because of the relative rarity of
transferring completely random data.

• Network bandwidth - assuming infinite bandwidth and
finite system resources at the end-points, the driver will
virtually always be a bottleneck to some extent.

• Block size - the driver compresses one block at a time
and compression algorithms behave differently depending on
block size.

• Data type - certain types of data (such as plain text)
compresses nicely while others (such as random and already
compressed data) do not.

We present a detailed performance study of the
compression driver using XIOPerf [6], an Iperf-like tool and
GridFTP [7,8], and provide a number of insights. The rest of
the paper is organized as follows. In Section II, we provide
background on GridFTP and Globus XIO. In Section III, we
describe the compression driver. In Section IV, we present the
experimental results and describe the conclusions drawn from
the experiments in Section V. In Section VI, we discuss future
work. We summarize in Section VII.

II. BACKGROUND
In this section we provide details on GridFTP and the Globus
eXtensible Input/Output (XIO) framework.

A. GridFTP
The GridFTP protocol is a backward-compatible extension

of the legacy RFC959 FTP protocol. It maintains the same
command/response semantics introduced by RFC959. It also
maintains the two-channel protocol semantics. One channel is
for control messaging (the control channel), such as requesting
what files to transfer and the other is for streaming the data
payload (the data channel). Once a client successfully forms a
control channel with a server, it can begin sending commands
to the server. In order to transfer a file, the client must first
establish a data channel. This task involves sending the server
a series of commands on the control channel describing
attributes of the desired data channel. Once these commands
are successfully sent, a client can request a file transfer. At this
point a separate data channel connection is formed using all
the agreed-upon attributes, and the requested file is sent across
it.

In standard FTP, the data channel can be used to transfer
only a single file. Subsequent transfers must repeat the data
channel setup process. GridFTP modifies this part of the
protocol to allow many files to be transferred across a single
data channel. This enhancement is known as data channel

caching. GridFTP also introduces other enhancements to
improve performance over the standard FTP mode. For
example, parallelism and striping allow data to be sent over
several independent data connections and reassembled at the
destination.

Globus GridFTP is widely used to move large volumes of
data over the wide area network. The XIO-based Globus
GridFTP framework makes it easy to plug in other transport
protocols. The Data Storage Interface [9] allows for easier
integration with various storage systems. It supports non-TCP-
based protocols such as UDT [10,11] and RDMA [12]. It also
provides advanced capabilities such as concurrency [13]
multilinking [14] and transfer resource management [15].

B. Globus XIO

NETWORK
PROTOCOL

PROTOCOL
API

APPLICATION

SPECIAL
DEVICE

PROPRIETARY
API

DISKPOSIX I/O

Figure 1. Typical application interaction with various
devices.

NETWORK
PROTOCOLDRIVER

APPLICATION

SPECIAL
DEVICEDRIVER

DISKDRIVER

GL
OB

US
 X

IO

Figure 2. Application interaction with various devices via
Globus XIO.

XIO is an extensible and flexible I/O library written for use
with the Globus Toolkit. XIO is written in C programming
language and provides us with one API that currently supports
many different wire protocols. All implementations of these
protocols are encapsulated as drivers that are modular.

GridFTP uses the XIO interface for network and disk I/O
operations. The XIO framework presents a single, standard
open/close, read/write interface to many different protocol
implementations. The protocol implementations, called
drivers, are responsible for manipulating and transporting the
user’s data. Drivers are grouped into a stack. When an I/O
operation is requested, the XIO framework passes the
operation request down the driver stack. An XIO driver can be

thought of as a modular protocol interpreter that can be
plugged into an I/O stack without concern about the
application using it. This modular abstraction is what allowed
us to achieve our success here without disturbing the
application’s tested code base and without forcing endpoints to
run new and unfamiliar code.

III. COMPRESSION DRIVER
There are two types of drivers in XIO - transform drivers

and transport drivers. Transport drivers are those that actually
move data into or out of the process space. Examples of this
are TCP and UDP. Transform drivers are those that
manipulate, examine, frame, or change the data, or in other
words, drivers that take any action other than moving the data
across the process boundary. Examples of this are
compression and logging.

The compression driver performs compression and

decompression of data for XIO. It supports zlib and lzo
compression algorithms. It is designed with ease of further
development in mind - adding different methods of
compressing data is straightforward. Like any XIO driver, the
compression driver implements the open, close, read and write
functions. The driver is designed in such a way that the code
that handles various aspects of the communication with XIO
and the code that manipulates the data are clearly abstracted.
These are entirely separate entities; the block functionality
does not know and does not care what the data handling
functions does with the data, as long as they fulfill certain
requirements. This separation makes it easier to add new
compression strategies.

IV. EXPERIMENTAL RESULTS
The experimental results were obtained using three

different hardware configurations. Configuration 1: AMD
Athlon 64 X2 3800+, Configuration 2: Intel Core2 Quad
Q9300 Configuration 3: 2 Intel XEON 2.0GHz. In all
configurations the hosts where connected by a 100Mbps local
area network.

We used the following datasets for our experiments:
• ASCII - plain text. Original file consisted of 400MB of

US census data. A common file type that is very compressible.
• Binary - consists of various software libraries. A common

type of data that is somewhat compressible.
• MPEG - an MPEG encoded movie. This was used as an

example of already compressed data, which will therefore be
difficult to compress further.

• Random - a file consisting of random data created from
/dev/urandom. This is used to establish a lower bound for
compressible data.

• Zero - a file consisting entirely of zeros created from
/dev/zero. This is used to establish an upper bound for
compressible data.

Each file was 1.2GB in size. In the case of the ASCII and
binary data, the original files were concatenated to fit this size.

The original files were several hundred MBs in size, which
ensures that no unfair advantage was given to the compression
algorithms due to the repetition of data.

The tests were performed using both the zlib and LZO

compression libraries. In both cases the default compression
level was used. The tests where done in a network
environment which at times may have been used by others. To
ensure that this did not affect the results, the tests where done
during a time of year and times of day when the network could
be expected to see minimal activity. Further, each test was run
ten times and the results were taken as the average of each set
of tests. In total, these results are the product of several days of
network time.

The results were obtained using XIOPerf and GridFTP.

The XIOPerf results were obtained using configuration 1 and
2. Configuration 3 was used for the GridFTP results. A brief
description of XIOPerf is given below.

A. XIOPerf
XIOPerf, a network protocol testing and evaluation tool.

XIOPerf is a command line program written on top of Globus
XIO with a simple and well-defined interface to many
different protocol implementations. XIOPerf was created to
give users a way to quickly and easily experiment with an
open-ended set of protocols over real networks to determine
which will best suit their needs. XIOPerf presents a similar
interface to that of IPerf. The main difference between IPerf
and XIOPerf is that while IPerf is limited to TCP and UDP,
XIOPerf is written on a framework that allows the user to plug
in arbitrary protocol implementations.

B. Compression Ratios
Tables 1 and 2 show the compressed size of each type of

data when transferred at a block size of 16KB for zlib and lzo
respectively. In other words, this is the amount of data actually
sent across the network when using the Compression Driver to
transfer these 1.2GB files.

Table 1: Compression ratio for zlib

Table 2: Compression ratio for lzo

C. XIOPerf Results for zlib Compression

1 2 4 8 16 32 64 128 256 512 1024 2048
−60

−40

−20

0

20

40

60

80

100

120
ASCII data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−70

−60

−50

−40

−30

−20

−10

0

10
Binary data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−70

−60

−50

−40

−30

−20

−10

0

10
MPEG data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−70

−60

−50

−40

−30

−20

−10

0

10
Random data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−100

0

100

200

300

400

500
Zero data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

Figure 3: Performance comparison of compression driver
(zlib) + TCP driver with TCP driver alone for ASCII data

1 2 4 8 16 32 64 128 256 512 1024 2048
−60

−40

−20

0

20

40

60

80

100

120
ASCII data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−70

−60

−50

−40

−30

−20

−10

0

10
Binary data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−70

−60

−50

−40

−30

−20

−10

0

10
MPEG data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−70

−60

−50

−40

−30

−20

−10

0

10
Random data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−100

0

100

200

300

400

500
Zero data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

Figure 4: Performance comparison of compression (zlib)
+ TCP driver with TCP driver alone for Binary data

1 2 4 8 16 32 64 128 256 512 1024 2048
−60

−40

−20

0

20

40

60

80

100

120
ASCII data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−70

−60

−50

−40

−30

−20

−10

0

10
Binary data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−70

−60

−50

−40

−30

−20

−10

0

10
MPEG data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−70

−60

−50

−40

−30

−20

−10

0

10
Random data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−100

0

100

200

300

400

500
Zero data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

Figure 5: Performance comparison of compression (zlib)
+ TCP driver with TCP driver alone for MPEG data

1 2 4 8 16 32 64 128 256 512 1024 2048
−60

−40

−20

0

20

40

60

80

100

120
ASCII data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−70

−60

−50

−40

−30

−20

−10

0

10
Binary data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−70

−60

−50

−40

−30

−20

−10

0

10
MPEG data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−70

−60

−50

−40

−30

−20

−10

0

10
Random data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−100

0

100

200

300

400

500
Zero data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

Figure 6: Performance comparison of compression (zlib)
+ TCP driver with TCP driver alone for Randon data

1 2 4 8 16 32 64 128 256 512 1024 2048
−60

−40

−20

0

20

40

60

80

100

120
ASCII data − zlib − 100 Mbit network

Blocksize (KiB)
Sp

ee
d

re
la

tiv
e

to
 T

C
P−

dr
iv

er
 o

nl
y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−70

−60

−50

−40

−30

−20

−10

0

10
Binary data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−70

−60

−50

−40

−30

−20

−10

0

10
MPEG data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−70

−60

−50

−40

−30

−20

−10

0

10
Random data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−100

0

100

200

300

400

500
Zero data − zlib − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
C

P−
dr

iv
er

 o
nl

y

Configuration 1
Configuration 2

Figure 7: Performance comparison of compression driver
(zlib) + TCP driver with TCP driver alone for Zero data

Figures 3 through 7 show the performance of using
compression driver using zlib algorithm on top of the TCP
driver in Globus XIO relative to that of using TCP driver
alone, for various types of datasets. The results are mostly on
the expected lines with zero files getting the big performance
boost followed by ASCII. Interestingly, the performance for
binary data is worse than random data especially for
configuration 2.

D. XIOPerf Results for lzo Compression
Figures 8 through 12 show the performance of using
compression driver using lzo algorithm on top of the TCP
driver in Globus XIO relative to that of using TCP driver
alone, for various types of datasets. The results are on the
expected lines except that configuration 2 really did produce
significantly lower results than configuration 1 at certain block
sizes despite having much more powerful hardware.

1 2 4 8 16 32 64 128 256 512 1024 2048
−50

0

50

100

150

200

250

300

350

400

450
ASCII data − LZO − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
CP
−d

riv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−20

0

20

40

60

80

100

120
Binary data − LZO − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
CP
−d

riv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−10

−8

−6

−4

−2

0

2
MPEG data − LZO − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
CP
−d

riv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0
Random data − LZO − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
CP
−d

riv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−50

0

50

100

150

200

250

300

350

400

450
Zero data − LZO − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
CP
−d

riv
er

 o
nl

y

Configuration 1
Configuration 2

Figure 8: Performance comparison of compression driver
(lzo) + TCP driver with TCP driver alone for ASCII data

1 2 4 8 16 32 64 128 256 512 1024 2048
−50

0

50

100

150

200

250

300

350

400

450
ASCII data − LZO − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
CP
−d

riv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−20

0

20

40

60

80

100

120
Binary data − LZO − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
CP
−d

riv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−10

−8

−6

−4

−2

0

2
MPEG data − LZO − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
CP
−d

riv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0
Random data − LZO − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
CP
−d

riv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−50

0

50

100

150

200

250

300

350

400

450
Zero data − LZO − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
CP
−d

riv
er

 o
nl

y

Configuration 1
Configuration 2

Figure 9: Performance comparison of compression driver
(lzo) + TCP driver with TCP driver alone for Binary data

1 2 4 8 16 32 64 128 256 512 1024 2048
−50

0

50

100

150

200

250

300

350

400

450
ASCII data − LZO − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
CP
−d

riv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−20

0

20

40

60

80

100

120
Binary data − LZO − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
CP
−d

riv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−10

−8

−6

−4

−2

0

2
MPEG data − LZO − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
CP
−d

riv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0
Random data − LZO − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
CP
−d

riv
er

 o
nl

y
Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−50

0

50

100

150

200

250

300

350

400

450
Zero data − LZO − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
CP
−d

riv
er

 o
nl

y

Configuration 1
Configuration 2

Figure 10: Performance comparison of compression (lzo)
+ TCP driver with TCP driver alone for MPEG data

1 2 4 8 16 32 64 128 256 512 1024 2048
−50

0

50

100

150

200

250

300

350

400

450
ASCII data − LZO − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
CP
−d

riv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−20

0

20

40

60

80

100

120
Binary data − LZO − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
CP
−d

riv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−10

−8

−6

−4

−2

0

2
MPEG data − LZO − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
CP
−d

riv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0
Random data − LZO − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
CP
−d

riv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−50

0

50

100

150

200

250

300

350

400

450
Zero data − LZO − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
CP
−d

riv
er

 o
nl

y

Configuration 1
Configuration 2

Figure 11: Performance comparison of compression (lzo)
+ TCP driver with TCP driver alone for Random data

1 2 4 8 16 32 64 128 256 512 1024 2048
−50

0

50

100

150

200

250

300

350

400

450
ASCII data − LZO − 100 Mbit network

Blocksize (KiB)
Sp

ee
d

re
la

tiv
e

to
 T

CP
−d

riv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−20

0

20

40

60

80

100

120
Binary data − LZO − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
CP
−d

riv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−10

−8

−6

−4

−2

0

2
MPEG data − LZO − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
CP
−d

riv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0
Random data − LZO − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
CP
−d

riv
er

 o
nl

y

Configuration 1
Configuration 2

1 2 4 8 16 32 64 128 256 512 1024 2048
−50

0

50

100

150

200

250

300

350

400

450
Zero data − LZO − 100 Mbit network

Blocksize (KiB)

Sp
ee

d
re

la
tiv

e
to

 T
CP
−d

riv
er

 o
nl

y

Configuration 1
Configuration 2

Figure 12: Performance comparison of compression (lzo)
+ TCP driver with TCP driver alone for Zero data

E. Compression Driver Overhead

1 2 4 8 16 32 64 128 256 512 1024 2048
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
No compression

Blocksize (KiB)

Th
ro

ug
hp

ut
 re

la
tiv

e
to

 T
C

P−
dr

iv
er

 o
nl

y

Figure 13: Compression driver overhead

The driver has a mode where data is transferred without being
compressed or modified. This represents the minimum amount
of overhead that will be added due to the presence of the
driver, regardless of which compression method is used and to
what extent the data is compressible. As can be observed from
Figure 13, the driver itself introduces very less overhead – less
than 0.2% for block sizes 4KB or more – exceeds 1% only at
block size 1KB. Values above zero should be regarded as
random fluctuations - the driver cannot increase performance
other than by compressing data.

F. GridFTP results
One of the features of GridFTP is that it can make use of

multiple parallel streams. As each stream is a separate thread,
this driver should theoretically see an increase in performance
when used in a multi-core/multi-CPU setup. To test this
theory, these tests were performed with GridFTP using four
different degrees of parallelism.

Figure 14: Performance of GridFTP with no compression

Figure 15: Performance of GridFTP with compression
driver (zlib) for different parallelism values

Figure 16: Performance of GridFTP with compression
driver (lzo) for different parallelism values

G. Fluctuations in the Results
As noted above, each test was run ten times and the result was
taken as the average. A general pattern could be noted that the
fluctuations would be greater for highly compressible data. To
get a feel for the these fluctuations, Table 3 presents the
differences found in the results for ASCII and MPEG data
using zlib-compression, at a block size of 16KB.

Table 3: Deviations in the results

V. INTERPRETING THE RESULTS
A number of useful conclusions can be drawn by looking at
the data that has been collected.

A. Effect on Network Load
The compression ratios measured tells us two important things
about the performance of the driver. The first is the impact on
network load. For example, when transferring the binary file
used in these tests using zlib compression network load is
reduced to 38.76%, to 97.70% for the MPEG, and so on. This
means that in congested network environments using this
driver may have a fortunate side effect – Increase the
performance even for other applications and hosts by reducing
total network load.

B. Effect on Host-to-Host Throughput
The second thing we learn looking at the compression ratios is

the maximum change in speed the driver can achieve. We will
refer to this as the optimal speed multiplier and is calculated
by 1 / compression ratio.
Consider the following example, which matches the results for
configuration 1 using zlib compression at a blocksize of
16KB:
• Throughput sans the compression driver is 90 Mbps.
• Throughput with the compression driver is 139 Mbps.
• Compression ratio is 0.0815.
If we could use hosts with infinite CPU resources, the
observed speed would be roughly 90 * (1/0.0815) = 1104
Mbps. Of course, there is no such thing as a host with infinite
CPU resources. But this is still useful knowledge, because it
gives us an idea of when the local hosts will be the bottleneck,
and when the network will. In this case the hosts are clearly
bottlenecks by a wide margin since the observed result (about
139 Mbps) is a far cry from the theoretical maximum (1104
Mbps). Second, it let's us derive the average speed at which
data is actually sent across the network by the formula ‘s/opt’,
where s is the observed speed when using the compression
driver, opt is the optimal speed multiplier described above
(inverse of the compression ratio). Continuing the above
example, this means that the break-even point between the
hosts and the network being the bottleneck for ASCII data
occurs when the network allows a throughput of 139*0.0815 =
11.33 Mbps. Similarly, we can predict that the speed will
remain fairly constant at around 139Mbps so long as network
throughput remains above 11.33Mbps.

C. Effect of Data Type
The formula s/opt for describing at which network speed the
local hosts ceases to be the bottleneck can also tell us
conclusively that the more a particular type of data can be
compressed, the more strain it puts on the local hosts: Above
we concluded that the host in configuration 1 can only output
11.33 m/s of compressed ASCII data to the network. Consider
the following example from the same test setup (configuration
1, 16KB block size, zlib compression), but transferring MPEG
data, which is very difficult to compress further:
• Throughput sans the compression driver remains 90Mbps.
• Throughput with the compression driver is 91.70Mbps.
• Compression ratio is 0.977.
The formula s/opt yields that throughput should about
89.29Mbps - meaning that the CPU in this case can output
compressed data essentially as fast as the network can transmit
it. The results support this conclusion - configuration 2 is not
able to exceed these results noticeably despite having a
considerably more powerful processor.

D. Choice of the Compression Algorithm
In general, zlib offers the best compression while LZO beats
zlib by a wide margin when it comes to speed. Which library
is to be preferred depends on the situation - if the network is
the bottleneck by a wide margin, zlib will likely be the better
choice. If not, LZO will produce better results. LZO can be
considered the safer choice, since it is less likely to have a

negative impact. Also note that there is no great difference in
speed between configuration 1 and 2 at most block sizes when
using LZO, except for ASCII and zero data. Identical
performance tells us that the host CPUs were not bottlenecks
in either case, even without doing the type of calculations
described above - if they were, configuration 2 would have
showed higher performance than configuration 1 due to the
more powerful CPU.

E. Effect of Block Size
As noted above, compression algorithms perform differently
depending on how much data they are fed at a time - the block
size. Generally, this means that a higher level of compression
will be achieved with larger block sizes. But, as we have
concluded, higher compression level does not automatically
translate into higher speeds. So which block size is to be
preferred? When using zlib-compression the optimal block
size seems to be 16KB, or possibly 32KB. LZO seems to
perform better when the block size is bigger, with the notable
exception of the drop in performance for configuration 2 at the
highest block size for random and MPEG data. No answer has
been found for why this drop takes place. Also note that these
results may vary depending on hardware configuration - we
cannot conclude from these results that 16KB will be the
optimal size for zlib for all configurations.

VI. FUTURE WORK

A. Customizing the Driver
Imagine you have a situation that matches that of
configuration 1 using zlib compression - the driver is
beneficial in some circumstances but detrimental in others.
What you would want to do is add rules such as “only
compress if block size is 4KB or larger, and if compression
ratio is greater than 80%” which would mean that the driver
would be detrimental under very few circumstances, if any.
We plan to add the capability to allow this type of
customization.

B. Dynamically Determine the Compression Strategy
We plan to add the ability to determine compression strategy
dynamically. For example, do a test-compression of data using
all available strategies and choose the one which gives the best
ration. This should probably only be done once each transfer -
if the first block compresses nicely, we can probably assume
that the rest will also compress nicely.

VII. SUMMARY
We have developed a compression driver for the Globus XIO
framework and presented a detailed performance study using
different compression techniques for different hardware
configurations. We have also showed how this driver can be
used to compress the data on-the-fly for GridFTP transfers and
how it can be used to speed up the transfers using parallelism

to take advantage of the multiple cores in the hosts. Our results
indicate that consistently higher speeds can be achieved across
a 100Mbps LAN without using state-of-the-art CPUs, as long
as the data sent is somewhat compressible. LZO is the
preferred compression library in most situations. More
compressible data does not automatically result in a speed
increase, since more compressible data is also more
demanding on the CPU. While the actual compression puts
significant strain on the CPU, the driver itself adds very little
overhead.

REFERENCES
[1] T. Chiueh, C. Yang, T. He, H. Pfister, A. Kaufman, "Integrated volume

compression and visualization," Visualization '97 proceedings, vol., no.,
pp.329-336, 24-24 Oct. 1997

[2] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid:
Enabling Scalable Virtual Organization,” The International Journal of
High Performance Computing Applications, vol. 15, no. 3, pp. 200–222,
Fall 2001.

[3] Energy Science Network – http://www.es.net
[4] Internet2 - http://www.internet2.edu/
[5] W. Allcock, J. Bresnahan, R. Kettimuthu, and J. Link, “The Globus

eXtensible Input/Output System (XIO): A Protocol Independent I/O
System for the Grid,” in Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium - Workshop 4, Vol. 5,
IEEE Computer Society, Washington, DC, 2005. 179.1. DOI=
http://dx.doi.org/10.1109/IPDPS.2005.429.

[6] J. Bresnahan, R. Kettimuthu, and I. Foster, “XIOPerf: A Tool for
Evaluating Network Protocols,” in Proceedings of the Third
International Workshop on Networks for Grid Applications, 2006.

[7] Allcock, B., Bresnahan, J., Kettimuthu, R., Link, M., Dumitrescu, C.,
Raicu, I. and Foster, I., The Globus Striped GridFTP Framework and
Server. SC'2005, 2005.

[8] R. Kettimuthu, L. Lacinski, M. Link, K. Pickett, S. Tuecke and I. Foster,
Instant GridFTP. In 9th Workshop on High Performance Grid and Cloud
Computing, May 2012.

[9] R. Kettimuthu, M. Link, J. Bresnahan, and W. Allcock, “Globus Data
Storage Interface (DSI) – Enabling Easy Access to Grid Datasets,” First
DIALOGUE Workshop: Applications-Driven Issues in Data Grids, Aug.
2005.

[10] Y. Gu and R. L. Grossman, “UDT: UDP-based Data Transfer for High-
Speed Wide Area Networks,” Comput. Networks 51, no. 7 (May 2007),
1777–1799.

[11] J. Bresnahan, M. Link, R. Kettimuthu, I. Foster, “UDT as an Alternative
Transport Protocol for GridFTP,” 7th International Workshop on
Protocols for Future, Large-Scale and Diverse Network Transports
(PFLDNeT 2009), Tokyo, Japan, May 2009.

[12] H. Subramoni, P. Lai, R. Kettimuthu, D.K. Panda, “High Performance
Data Transfer in Grid Environment Using GridFTP over InfiniBand,”
10th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid 2010), May 2010.

[13] R. Kettimuthu, A. Sim, D. Gunter, B. Allcock, P. Bremer, J. Bresnahan,
A. Cherry, L. Childers, E. Dart, I. Foster, K. Harms, J. Hick, J. Lee, M.
Link, J. Long, K. Miller, V. Natarajan, V. Pascucci, K. Raffenetti, D.
Ressman, D. Williams, L. Wilson, L. Winkler, “Lessons Learned from
Moving Earth System Grid Data Sets over a 20 Gbps Wide-Area
Network”, 19th ACM International Symposium on High Performance
Distributed Computing (HPDC), 2010.

[14] J. Bresnahan, M. Link, R. Kettimuthu, I. Foster, “GridFTP
Multilinking,” 2009 TeraGrid Conference, Arlington, VA, June 2009.

[15] J. Bresnahan, M. Link, R. Kettimuthu, and I. Foster, “Managed
GridFTP,” 8th Workshop on High Performance Grid and Cloud
Computing, May 2011

